题目描述:
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
Try to utilize the property of a BST.
What if you could modify the BST node's structure?
The optimal runtime complexity is O(height of BST).
题目大意:
给定一棵二叉搜索树(BST),编写一个函数kthSmallest找出其中第k小的元素。
注意:
你可以假设k总是有效的, 1 ≤ k ≤ BST的元素总数。
进一步思考:
如果BST的修改(插入/删除)操作十分频繁,并且需要频繁地找出第k小的元素,应该怎样优化kthSmallest函数?
提示:
尝试利用BST的属性。
如果你可以修改BST节点的结构时,应该怎样做?
最优时间复杂度应该是O(BST的高度)。
解题思路:
BST具有如下性质:
左子树中所有元素的值均小于根节点的值
右子树中所有元素的值均大于根节点的值
因此采用中序遍历(左 -> 根 -> 右)即可以递增顺序访问BST中的节点,从而得到第k小的元素,时间复杂度O(k)
Python代码:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @param {integer} k
# @return {integer}
def kthSmallest(self, root, k):
stack = []
node = root
while node:
stack.append(node)
node = node.left
x = 1
while stack and x <= k:
node = stack.pop()
x += 1
right = node.right
while right:
stack.append(right)
right = right.left
return node.val
进一步思考:
如果BST节点TreeNode的属性可以扩展,则再添加一个属性leftCnt,记录左子树的节点个数
记当前节点为node 当node不为空时循环: 若k == node.leftCnt + 1:则返回node 否则,若k > node.leftCnt:则令k -= node.leftCnt + 1,令node = node.right 否则,node = node.left
上述算法时间复杂度为O(BST的高度)
本文链接:http://bookshadow.com/weblog/2015/07/02/leetcode-kth-smallest-element-bst/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。