题目描述:
Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
题目大意:
给定一个整数数组A,其长度为n。
假设Bk是将数组A顺时针旋转k个位置得到的数组,我们定义一个“旋转函数”F如下所示:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
计算F(0), F(1), ..., F(n-1)的最大值
注意:
n确保小于10^5
解题思路:
假设数组A的长度为5,其旋转函数F的系数向量如下所示:
0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
用每一行系数与其上一行做差,差值恰好为sum(A) - size * A[size - x]
,其中x为行数
因此,通过一次遍历即可求出F(0), F(1), ..., F(n-1)的最大值。
Python代码:
class Solution(object):
def maxRotateFunction(self, A):
"""
:type A: List[int]
:rtype: int
"""
size = len(A)
sums = sum(A)
sumn = sum(x * n for x, n in enumerate(A))
ans = sumn
for x in range(size - 1, 0, -1):
sumn += sums - size * A[x]
ans = max(ans, sumn)
return ans
本文链接:http://bookshadow.com/weblog/2016/09/11/leetcode-rotate-function/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。
Joe Hisaishi 发布于 2016年9月15日 03:01 #
-- 用每一行系数与其上一行做差,差值恰好为<code>sum(A) + size * A[size - x]</code>
++ 用每一行系数与其上一行做差,差值恰好为<code>sum(A) - size * A[size - x]</code>
在线疯狂 发布于 2016年9月15日 09:50 #
感谢更正,已经修改 :D