题目描述:
Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Example:
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
题目大意:
给定4个整数列表A, B, C, D,计算有多少个元组 (i, j, k, l) 满足 A[i] + B[j] + C[k] + D[l] = 0。
为了使问题简化,A, B, C, D相等都是N, 0 ≤ N ≤ 500。所有整数在范围 [-2^28 , 2^28 - 1] 之内,并且结果确保至多为 2^31 - 1。
解题思路:
利用字典cnt,将A,B中各元素(笛卡尔积)的和进行分类计数。
将C,D中各元素(笛卡尔积)和的相反数在cnt中的值进行累加,即为答案。
Python代码:
class Solution(object):
def fourSumCount(self, A, B, C, D):
"""
:type A: List[int]
:type B: List[int]
:type C: List[int]
:type D: List[int]
:rtype: int
"""
ans = 0
cnt = collections.defaultdict(int)
for a in A:
for b in B:
cnt[a + b] += 1
for c in C:
for d in D:
ans += cnt[-(c + d)]
return ans
本文链接:http://bookshadow.com/weblog/2016/11/13/leetcode-4sum-ii/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。