题目描述:
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
题目大意:
给定一棵二叉搜索树(BST),寻找BST中两个给定节点的最近公共祖先(LCA)。
根据维基百科对LCA的定义:“节点v与w的最近公共祖先是树T上同时拥有v与w作为后继的最低节点(我们允许将一个节点当做其本身的后继)”
例如,题目描述的样例中,节点2和8的最近公共祖先(LCA)是6。另一个例子,节点2和4的LCA是2,因为根据LCA的定义,一个节点可以是其本身的后继。
解题思路:
根据BST的性质,左子树节点的值<根节点的值,右子树节点的值>根节点的值
记当前节点为node,从根节点root出发 若p与q分别位于node的两侧,或其中之一的值与node相同,则node为LCA 否则,若p的值<node的值,则LCA位于node的左子树 否则,LCA位于node的右子树
Python代码:
迭代版本
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @param {TreeNode} p
# @param {TreeNode} q
# @return {TreeNode}
def lowestCommonAncestor(self, root, p, q):
while (p.val - root.val) * (q.val - root.val) > 0:
root = [root.left, root.right][p.val > root.val]
return root
递归版本
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
# @param {TreeNode} root
# @param {TreeNode} p
# @param {TreeNode} q
# @return {TreeNode}
def lowestCommonAncestor(self, root, p, q):
if (p.val - root.val) * (q.val - root.val) <= 0:
return root
elif p.val < root.val:
return self.lowestCommonAncestor(root.left, p, q)
else:
return self.lowestCommonAncestor(root.right, p, q)
本文链接:http://bookshadow.com/weblog/2015/07/11/leetcode-lowest-common-ancestor-binary-search-tree/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。