[LeetCode]Ones and Zeroes

题目描述:

LeetCode 474. Ones and Zeroes

In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.

Note:

  1. The given numbers of 0s and 1s will both not exceed 100
  2. The size of given string array won't exceed 600.

Example 1:

Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4

Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”

Example 2:

Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2

Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".

题目大意:

给定一组01字符串strs。求用m个0和n个1最多可以组成多少个strs中的字符串。

解题思路:

动态规划(Dynamic Programming)

二维01背包问题(Knapsack Problem)

状态转移方程:

for s in strs:
    zero, one = s.count('0'), s.count('1')
    for x in range(m, zero - 1, -1):
        for y in range(n, one - 1, -1):
            dp[x][y] = max(dp[x - zero][y - one] + 1, dp[x][y])

上式中,dp[x][y]表示至多使用x个0,y个1可以组成字符串的最大数目

Python代码:

class Solution(object):
    def findMaxForm(self, strs, m, n):
        """
        :type strs: List[str]
        :type m: int
        :type n: int
        :rtype: int
        """
        dp = [[0] * (n + 1) for x in range(m + 1)]
        for s in strs:
            zero, one = s.count('0'), s.count('1')
            for x in range(m, zero - 1, -1):
                for y in range(n, one - 1, -1):
                    dp[x][y] = max(dp[x - zero][y - one] + 1, dp[x][y])
        return dp[m][n]

Java代码:

public class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int dp[][] = new int[m + 1][n + 1];
        int ans = dp[0][0] = 0;
        for (String s : strs) {
            int zero = 0, one = 0;
            for (int i = 0; i < s.length(); i++) {
                if (s.charAt(i) == '0') {
                    zero++;
                } else {
                    one++;
                }
            }
            for (int i = m; i > zero - 1; i--) {
                for (int j = n; j > one - 1; j--) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - zero][j - one] + 1);
                }
            }
        }
        return dp[m][n];
    }
}

 

本文链接:http://bookshadow.com/weblog/2016/12/11/leetcode-ones-and-zeroes/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。

如果您喜欢这篇博文,欢迎您捐赠书影博客: ,查看支付宝二维码

Pingbacks已关闭。

评论
  1. 赤壁的火神 赤壁的火神 发布于 2016年12月12日 13:51 #

    问一下x和y的循环为什么要倒序呢 我就是正序写的
    if i + zeros <= m and j + ones <= n: dp[i + zeros][j + ones] = max(dp[i][j] + 1, dp[i + zeros][j + ones])
    然后发现是错的。。。比赛的时候卡在这里一直过不去。。。现在都没懂。。。

  2. 在线疯狂 在线疯狂 发布于 2016年12月13日 12:11 #

    将dp数组扩展一维,状态转移方程:dp[k][i+zero][j+one] = max(dp[k][i+zero][j+one], dp[k-1][i][j] + 1),这样就可以正序遍历了。
    若dp数组是两维,正序遍历会存在同一个目标串被使用多次的情况。

张贴您的评论