题目描述:
LeetCode 483. Smallest Good Base
For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.
Now given a string representing n, you should return the smallest good base of n in string format.
Example 1:
Input: "13" Output: "3" Explanation: 13 base 3 is 111.
Example 2:
Input: "4681" Output: "8" Explanation: 4681 base 8 is 11111.
Example 3:
Input: "1000000000000000000" Output: "999999999999999999" Explanation: 1000000000000000000 base 999999999999999999 is 11.
Note:
- The range of n is [3, 10^18].
- The string representing n is always valid and will not have leading zeros.
题目大意:
给定整数n,如果n的k进制表示全部为1,则称k为n的一个“良好基数”(good base),其中k≥2
给定字符串表示的n,以字符串形式返回n的最小的“良好基数”
注意:
- n的取值范围是[3, 10^18]
- 字符串形式的n总是有效的并且不包含前导0
解题思路:
枚举法
记k的最高次幂为m,从上界 int(log(n)) 向下界 1 递减枚举m 问题转化为计算1 + k + k^2 + ... + k^m = n的正整数解 由n > k^m得: k < n ** 1/m 由n < (k + 1)^m得: k > n ** 1/m - 1,此处使用了二项式定理 因此k可能的解为:int(n ** 1/m) 最后验证1 + k + k^2 + ... + k^m 是否等于 n
Python代码:
class Solution(object):
def smallestGoodBase(self, n):
"""
:type n: str
:rtype: str
"""
n = int(n)
for m in range(int(math.log(n, 2)), 1, -1):
k = int(n ** (1.0 / m))
if sum(k ** i for i in range(m + 1)) == n:
return str(k)
return str(n - 1)
本文链接:http://bookshadow.com/weblog/2017/01/22/leetcode-smallest-good-base/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。
赤壁的火神 发布于 2017年1月23日 12:53 #
碉堡了。。。这道题我看了是一点思路都没有
Jedihy 发布于 2017年1月31日 07:00 #
这题楼主自己做出来的?
123 发布于 2017年2月6日 17:35 #
这个有原题,是google 2017 apactest round e的第二题,https://code.google.com/codejam/contest/5264487/dashboard#s=p1,楼主的方法是最优的,因为k>=2,n < 2^64,所以从转化后的进制表示的长度入手进行check,遍历,这个思路特别巧妙,想出来开m次幂的方法很棒!其实还可以对k进行二分,快速幂进行求解,但是运算结果很大,很容易溢出,不好进行判断,可以进行一些特别处理,也可以ac。楼主不要打我[可怜]