题目描述:
LeetCode 873. Length of Longest Fibonacci Subsequence
A sequence X_1, X_2, ..., X_n
is fibonacci-like if:
n >= 3
X_i + X_{i+1} = X_{i+2}
for alli + 2 <= n
Given a strictly increasing array A
of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A
. If one does not exist, return 0.
(Recall that a subsequence is derived from another sequence A
by deleting any number of elements (including none) from A
, without changing the order of the remaining elements. For example, [3, 5, 8]
is a subsequence of [3, 4, 5, 6, 7, 8]
.)
Example 1:
Input: [1,2,3,4,5,6,7,8] Output: 5 Explanation: The longest subsequence that is fibonacci-like: [1,2,3,5,8].
Example 2:
Input: [1,3,7,11,12,14,18] Output: 3 Explanation: The longest subsequence that is fibonacci-like: [1,11,12], [3,11,14] or [7,11,18].
Note:
3 <= A.length <= 1000
1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
- (The time limit has been reduced by 50% for submissions in Java, C, and C++.)
题目大意:
求递增正整数组的最长类斐波那契数列。
解题思路:
动态规划(Dynamic Programming)
时间复杂度 O(N^2)
状态转移方程:
dp[y][x + y] = max(dp[y][x + y], dp[x][y] + 1)
上式中, dp[x][y]表示以(x, y)为结尾的类斐波那契数列的长度
Python代码:
class Solution(object):
def lenLongestFibSubseq(self, A):
"""
:type A: List[int]
:rtype: int
"""
vset = set(A)
dp = collections.defaultdict(lambda: collections.defaultdict(int))
size = len(A)
ans = 0
for i in range(size):
x = A[i]
for j in range(i + 1, size):
y = A[j]
if x + y not in vset: continue
dp[y][x + y] = max(dp[y][x + y], dp[x][y] + 1)
ans = max(dp[y][x + y], ans)
return ans and ans + 2 or 0
本文链接:http://bookshadow.com/weblog/2018/07/22/leetcode-length-of-longest-fibonacci-subsequence/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。