标签归档:recommender-system

RSS feed of recommender-system

国外典型图书馆推荐系统简介

library-recommender-system

    由于起步较早,目前国外的图书馆信息化程度整体上优于国内,推荐系统也已经开始应用在数字化图书馆领域,为读者提供个性化的图书推荐服务。其中,BibTip,ExLibris bX,Foxtrot,TechLens,Fab和LIBRA是几个比较有代表性的图书馆推荐系统解决方案。

    德国卡尔斯鲁厄大学的BibTip推荐系统从2009年开始作为一项独立的付费服务对用户开放。BibTip是一个基于行为的推荐系统,通过对用户行为的匿名监控与评估提供推荐服务。该系统在服务器上进行推荐的数据分析及管理,图书馆无需过多的技术投入即可使用BibTip的服务。BibTip的体系结构包含3层,自底向上分别为数据层、代理层和用户界面层。BibTip的理论基础是Andrew Ehrenberg提出的重复购买理论,该理论对消费者的行为进行了分析[1]。Ehrenberg证明人们在做出商品支付决定后会重复他们的选择,并且在下一次购物时会倾向于选择同一个品牌。BibTip使用了这一理论。通过用户的初始行为可得出用户的兴趣和喜好。例如,假设某用户对刊物X感兴趣,则该用户很可能对同一作者的刊物Y也感兴趣。BibTip需要大约几个月的时间收集和分析用户的初始行为数据。如果用户的访问频率较高,初始阶段可以缩短一些,但是推荐系统仍然面临着冷启动的问题。由于是基于用户行为的推荐系统,BibTip的适用范围比较广泛 ...

继续阅读

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

下面简单列举几种常用的推荐系统评测指标:

1、准确率与召回率(Precision & Recall)

准确率召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率

一般来说,Precision就是检索出来的条目(比如:文档、网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。

正确率、召回率和 F 值是在鱼龙混杂的环境中,选出目标的重要评价指标。不妨看看这些指标的定义先:

    1. 正确率 = 提取出的正确信息条数 /  提取出的信息条数   ...

继续阅读

推荐系统评测—推荐系统评估策略,经典评测方法

Evaluation of Recommender Systems -- Recommender systems evaluation strategies, classic evaluation metrics

推荐系统评测—系统评估策略,经典评测方法

The evaluation in the recommender systems domain might be done utilizing several principal approaches, namely, off-line experiment, user studies and online experiments. Selecting the evaluation strategy ...

继续阅读