题目描述:
A move consists of taking a point (x, y)
and transforming it to either (x, x+y)
or (x+y, y)
.
Given a starting point (sx, sy)
and a target point (tx, ty)
, return True
if and only if a sequence of moves exists to transform the point (sx, sy)
to (tx, ty)
. Otherwise, return False
.
Examples: Input: sx = 1, sy = 1, tx = 3, ty = 5 Output: True Explanation: One series of moves that transforms the starting point to the target is: (1, 1) -> (1, 2) (1, 2) -> (3, 2) (3, 2) -> (3, 5) Input: sx = 1, sy = 1, tx = 2, ty = 2 Output: False Input: sx = 1, sy = 1, tx = 1, ty = 1 Output: True
Note:
sx, sy, tx, ty
will all be integers in the range[1, 10^9]
.
题目大意:
从点(x, y)出发经过一次移动可以到达(x + y, y)或者(x, x + y)
给定点(sx, sy)与(tx, ty),判断(sx, sy)是否可以经过若干次上述移动到达(tx, ty)
解题思路:
循环取余数
类似于辗转相除法(欧几里得算法)
Python代码:
class Solution(object):
def reachingPoints(self, sx, sy, tx, ty):
"""
:type sx: int
:type sy: int
:type tx: int
:type ty: int
:rtype: bool
"""
while sx < tx and sy < ty:
if tx > ty: tx %= ty
else: ty %= tx
if sx == tx: return (ty - sy) % sx == 0
if sy == ty: return (tx - sx) % sy == 0
return False
本文链接:http://bookshadow.com/weblog/2018/02/16/leetcode-reaching-points/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。