题目描述:
LeetCode 790. Domino and Tromino Tiling
We have two types of tiles: a 2x1 domino shape, and an "L" tromino shape. These shapes may be rotated.
XX <- domino XX <- "L" tromino X
Given N, how many ways are there to tile a 2 x N board? Return your answer modulo 10^9 + 7.
(In a tiling, every square must be covered by a tile. Two tilings are different if and only if there are two 4-directionally adjacent cells on the board such that exactly one of the tilings has both squares occupied by a tile.)
Example: Input: 3 Output: 5 Explanation: The five different ways are listed below, different letters indicates different tiles: XYZ XXZ XYY XXY XYY XYZ YYZ XZZ XYY XXY
Note:
- N will be in range
[1, 1000]
.
题目大意:
有两种形状的多米诺骨牌(长条形和L形),骨牌可以旋转。
求拼成2xN的矩形的所有拼接方法的个数。
解题思路:
动态规划(Dynamic Programming)
dp[x][y]表示长度(两行的最小值)为x,末尾形状为y的拼接方法个数
y有三种可能:
0表示末尾没有多余部分 1表示第一行多出1个单元格 2表示第二行多出1个单元格
状态转移方程:
dp[x][0] = (dp[x - 1][0] + sum(dp[x - 2])) % MOD 1个竖条, 2个横条,L7, rotate(L7) dp[x][1] = (dp[x - 1][0] + dp[x - 1][2]) % MOD rotate(L),L + 第一行横条 dp[x][2] = (dp[x - 1][0] + dp[x - 1][1]) % MOD L,rotate(L) + 第二行横条
Python代码:
class Solution(object):
def numTilings(self, N):
"""
:type N: int
:rtype: int
"""
MOD = 10**9 + 7
dp = [[0] * 3 for x in range(N + 10)]
dp[0] = [1, 0, 0]
dp[1] = [1, 1, 1]
for x in range(2, N + 1):
dp[x][0] = (dp[x - 1][0] + sum(dp[x - 2])) % MOD
dp[x][1] = (dp[x - 1][0] + dp[x - 1][2]) % MOD
dp[x][2] = (dp[x - 1][0] + dp[x - 1][1]) % MOD
return dp[N][0]
本文链接:http://bookshadow.com/weblog/2018/02/25/leetcode-domino-and-tromino-tiling/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。
DennyZhang 发布于 2018年2月27日 06:57 #
比较新颖的DP题。出题者比较赞。
经常看博主的解答,还有收获。能加个微信吗?
Email: contact at dennyzhang.com