题目描述:
LeetCode 786. K-th Smallest Prime Fraction
A sorted list A
contains 1, plus some number of primes. Then, for every p < q in the list, we consider the fraction p/q.
What is the K
-th smallest fraction considered? Return your answer as an array of ints, where answer[0] = p
and answer[1] = q
.
Examples: Input: A = [1, 2, 3, 5], K = 3 Output: [2, 5] Explanation: The fractions to be considered in sorted order are: 1/5, 1/3, 2/5, 1/2, 3/5, 2/3. The third fraction is 2/5. Input: A = [1, 7], K = 1 Output: [1, 7]
Note:
A
will have length between2
and2000
.- Each
A[i]
will be between1
and30000
. K
will be between1
andA.length * (A.length + 1) / 2
.
题目大意:
给定由1和素数组成的列表A(递增有序),求其中相互不同的元素两两相除的第K大的数对。
解题思路:
优先队列(Priority Queue)
首先将下标(0, 1), (0, 2) ... (0, N)加入优先队列pq,pq中的数对(i, j)按照A[i] / A[j]从小到大排序 执行K次如下操作: 从pq中弹出元素top,若top.x + 1 < top.y 则将top.x + 1, top.y加入pq 返回最后一次弹出的数对
Java代码:
public class Solution {
public int[] kthSmallestPrimeFraction(int[] A, int K) {
class Pair implements Comparable<Pair>{
public int x;
public int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(Pair p) {
return A[x] * A[p.y] - A[y] * A[p.x];
}
}
PriorityQueue<Pair> pq = new PriorityQueue<>();
for (int i = 1; i < A.length; i++) {
pq.add(new Pair(0, i));
}
Pair top = null;
for (int i = 0; i < K; i++) {
top = pq.poll();
if (top.x + 1 < top.y) {
pq.add(new Pair(top.x + 1, top.y));
}
}
return new int[]{A[top.x], A[top.y]};
}
}
Python代码(Time Limit Exceeded)
class Solution(object):
def kthSmallestPrimeFraction(self, A, K):
"""
:type A: List[int]
:type K: int
:rtype: List[int]
"""
N = len(A)
h = []
for i in range(1, N):
heapq.heappush(h, (float(A[0]) / A[i], 0, i))
for x in range(K):
v, p, q = heapq.heappop(h)
if p + 1 < q:
heapq.heappush(h, (float(A[p + 1]) / A[q], p + 1, q))
return A[p], A[q]
本文链接:http://bookshadow.com/weblog/2018/02/18/leetcode-k-th-smallest-prime-fraction/
请尊重作者的劳动成果,转载请注明出处!书影博客保留对文章的所有权利。